
DOI: 10.1007/s10765-006-0070-1
International Journal of Thermophysics, Vol. 27, No. 3, May 2006 (© 2006)

Measurement of the Thermal Conductivity
and Thermal Diffusivity of Liquids. Part I: “Pure
Conduction and an Example of a Solution”1

B. Remy2,3 and A. Degiovanni2

The measurement of the thermal conductivity of liquids is rather complicated
due to the nature of the fluid. To the conduction, which has to be characterized,
are added the natural convection, the radiative transfer, and the perturbations
caused by the presence of enclosure walls. The goal of this work, composed of
two parts, is to implement an experimental bench allowing the measurement of
the thermal diffusivity and thermal conductivity of liquids. The first part (Part I)
presented here, is about pure conduction and focuses on several aspects involved
in this measurement, which will lead one, based on theoretical and practical con-
siderations, to choose a pulse method in a one-dimensional (1D) and cylindrical
geometry to solve the problem. In the second section of this part, the problem
of the parameters estimation is investigated with the presence of the walls of the
measuring cell and this will allow us to define the characteristics of the walls
(thickness and thermophysical properties). The entire problem is treated through
the thermal quadrupoles method. Finally, in a last section, a setup at room tem-
perature is described. The second part (Part II) of this work that is presented
in another paper will show how it is possible to get rid of the convection by a
judicious choice of the extension of the measuring cell and how the radiation
effects can be taken into account to perform measurements at high temperatures
(up to 500◦C).
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1. INTRODUCTION

The determination of the thermal conductivity of a liquid is particularly
difficult since one is in the presence of several modes of heat transfer:
conduction, convection, and radiation disturbed by the presence of solid
boundaries, which also play a key role in the heat transfer. The goal in
this study is to show, from an example, the different steps to follow for
setting-up a device allowing the measurement of thermal properties of
fluids.

2. PROBLEM

As one thinks about thermal conductivity measurement, one considers
the steady-state hot-wire method; and as one thinks about thermal diffu-
sivity, one considers the flash method. The main drawbacks of the steady-
state hot-wire method are:

– Only the thermal conductivity can be determined (assuming that no
convection and no radiation are present in the measuring cell).

– In most cases, natural convection that appears as a power-depen-
dent apparent thermal conductivity cannot be neglected and must
be modeled in cylindrical geometry, which makes the problem dif-
ficult to solve.

– Radiation is difficult to take into account in this geometry and is
bi-dimensional.

Conversely, the flash method presents some advantages:

– The ability to work in Cartesian coordinates with the assumption
of one-dimensional (1D) heat transfer.

– The possibility to obtain the thermal conductivity and thermal
diffusivity of the fluid at the same time choosing an appropriate
geometry and materials for the measuring cell.

– Taking into account the radiation in a 1D geometry and in Carte-
sian coordinates is analytically possible.

– In this geometry, conductive and convective heat transfers can be
uncoupled.

These are the reason why we have chosen (contrary to what is usually
done for fluids [1–16]) the “flash” method. Two configurations can be
considered: the classical plane geometry (Fig. 1), or cylindrical geometry
(Fig. 2). Each of them has its own advantages.
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Fig. 1. Principle of the measurement (plane geometry).

• For plane geometry:
The upper face being heated, natural convection can always be
neglected. Nevertheless, it is very difficult in practice to have per-
fect contact between the liquid and the top of the measuring cell,
which introduces an unknown additional parameter, a contact
resistance. It is also necessary to take into account conduction
through the lateral walls of the cell, and this makes the implemen-
tation of estimation models difficult.

• For cylindrical geometry:

– The contact between the liquid and walls is good.

– The heat transfer is 1D.

– Free convection is always present, which requires work in
a “pseudo-conduction” regime and a proper choice of the
aspect ratio of the measuring cell (its extension e

/
h). We

will see more precisely in Part II how it is possible to over-
come this difficulty.

These physical considerations and other more practical reasons (filling
and cleaning of the cell) led us to consider a cylindrical geometry as given
in Fig. 2. The liquid is located between two metallic, coaxial cylinders. The
cell is subjected to a heat impulse stimulation on the inner face of the inter-
nal cylinder and the temperature is measured on the back face of the
external cylinder (technique known as “back-face” measurement).
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Fig. 2. Principle of the measurement (cylindrical geometry).

A study has been carried out here in an effort to minimize the dis-
turbing effects introduced by the measuring cell.

3. PROBLEM IN PURE CONDUCTION AND ESTIMATION
METHOD

In this part, we make the assumption of purely conductive heat trans-
fer. The effects of metallic walls are investigated, and a model allowing the
measurement of both the thermal diffusivity and thermal conductivity of
fluids by an inverse technique will be presented.

The thicknesses of the three layers are small compared to their radii
(aspect ratio less than 0.1), and the differences between the temperatures
calculated in Cartesian and cylindrical coordinates are less than 0.01%.
Thus, we will consider a Cartesian coordinate system in the next section.
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3.1. Direct Model

From the preceding remarks, we will consider a Cartesian coordinate
system and we will use the thermal quadrupole method to solve the prob-
lem.

3.1.1. Model

The problem is described in Fig. 3. The implementation of the analyt-
ical model is simplified by using thermal quadrupoles [17]. After a Laplace
transform, the solution is obtained from a chain of quadrupoles. A dia-
gram of the system is given in Fig. 4 with

Fig. 3. Model.

Fig. 4. Quadrupole representation.
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– 1
/
(hS) being the convective heat losses with the surroundings,

– A,B,C, and D are coefficients of the inverse transfer matrices to
account for the effects of the walls and liquid. Their expressions are
given by

Ai = Di = cosh
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(subscript i refers to the fluid or to the walls)
and ei is the thickness of the material, ai is the thermal diffusivity, and λi

is the thermal conductivity

3.1.2. Solution

The rear-face temperature θ(p) in a Laplace domain is given by

θ(p)= φ(p)

C +2AhS +B(hs)2
. (2)

A, B, and C represent the coefficients of the equivalent transfer matrix
obtained by taking the product of the transfer matrix of each layer:

[
A B
C D

]
=

[
Aw Bw
Cw Aw

][
Al Bl

Cl Al

][
Aw Bw
Cw Aw

]
, (3)

with:

A= (AwAl +BwCl)Aw + (AwBl +BwAl)Cw

B= (AwAl +BwCl)Bw + (AwBl +BwAl)Aw

C= (CwAl +AwCl)Aw + (CwBl +AwAl)Cw.

By assuming that the heat pulse ϕ (t) received by the system is infinitely
short (Dirac of flux), then φ (p) is a constant equal to the pulse energy.

For h=0, the temperature at long times is given by

T∞ = lim
t→∞T (t)= lim

p→0
pθ(p) . (4)

Thus,

T∞ = lim
p→0

pφ(p)

C (p)
, (5)
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and:

T∞ = Q

S (2ρcwew +ρclel)
(T∞ is called the adiabatic temperature). (6)

Then, the inverse Laplace transform of Eq. (2) is implemented numeri-
cally. Several algorithms, either the Stehfest algorithm [18], the De Hoog
algorithm [19], or a numerical inverse fast Fourier transform (IFFT) [20],
which lead in our case to the same results, can be used.

Figure 5 gives an example of results obtained for two liquids (water
and oil) and two different fluid thicknesses (0.5 and 2 mm). The thermo-
physical properties used are:

– el =4.5 mm, h=5W · m−2 ·K−1

– Water: λl =0.597 W · m−1·K−1, al =1.43×10−7 m2·s−1

– Oil: λl =0.132 W ·m−1 ·K−1, al =7.33×10−8 m2 · s−1

– Walls (copper): λw =395 W ·m−1 ·K−1, aw =1.15×10−4 m2 · s−1

– ew =0.5 or 2 mm

– Q
/
S =4×104 J ·m−2

3.1.3. Sensitivity Study

The model depends on several parameters. Some of them are assumed
known, and others will be estimated. The initial goal in this study is to
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Fig. 5. Simulation examples (impulse responses).
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thermally characterize the fluid, i.e., to estimate two quantities, the ther-
mal diffusivity and conductivity (or any other set of parameters as, for
instance, the effusivity or the specific heat). Assuming that the thermal
properties of the walls and the geometry of the system are known, the
model is a function of four unknown parameters:

el
/√

al el
/
λl

Q
/
S h.

The question is to know if it is possible to determine these four param-
eters from only one experimental thermogram. Generally, it is a difficult
problem because of the measurement noise, which involves an error in
the estimated values of parameters that is necessary to quantify. Beck and
Arnold [21] showed that one of the most powerful tools for that is a sen-
sitivity study, associated with a stochastical approach.

Letting βi represent the unknown parameters; the temperature evolu-
tion can be written as

T =f (t, β1, β2, β3, β4)=f (t, β) . (7)

The measured temperature being disturbed, one can write by assuming an
additive noise:

Yi =T (ti , β)+ εi, (8)

where εi is the random noise, associated with measurement Yi at time ti .
The sensitivity coefficient of temperature T to parameters βj at time

t is defined by

Xj (t, β)= ∂T

∂βj

(t, β) . (9)

Later on, we will use the reduced sensitivity coefficients, which are easier
to use for comparisons:

Xj
∗ (t, β)=βj

∂T

∂βj

(t, β) . (10)

We can also define a sensitivity matrix (m × n dimensions), where each
column corresponds to a sensitivity coefficient Xj and each line to one
measurement at time ti . The sensitivity curves give us information on the
estimation error in parameters (the error is small when the sensitivity coef-
ficient is maximum) and in their possible correlations. The parameters are
correlated if the sensitivity coefficients are proportional and it is then that
the simultaneous estimation of these parameters is difficult.
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In our case, the problem is also nonlinear. Thus, the sensitivity curves
and consequently the estimation will depend not only on the nominal val-
ues of the unknown parameters but also on the known parameters and on
the geometry of the system. This is the reason why, for instance, we can
show that there exists an optimum thickness for the walls.

As an example, Fig. 6 gives the sensitivity curves for water and oil
with 0.5 and 2-mm wall thicknesses, respectively.

The curves seem to show that some parameters are more or less cor-
related, particularly β1

(
el

/√
al

)
and β3

(
Q

/
S
)

or β1 and β2
(
el

/
λl

)
, which

would not allow simultaneous estimation of these parameters and conse-
quently the thermal diffusivity. In addition, one can note that for a time
larger than twice the maximum, the parameters are strongly correlated.
Indeed, one is for the case of the cooling of a system with a quasi-uniform
temperature (lumped body). The thermogram is a pure decaying exponen-
tial, which depends on only one parameter, the time-constant of the system
h
/
(2ρcwew +ρclel). This remark leads us to limit the estimation interval to

short times. We have chosen to work between t =0 and t =1.5 tmax.

Fig. 6. Sensitivity curves for water and oil (0.5 and 2 mm).
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The significant number of parameters (4) and the cross correlations
between them make the reading and interpretation of the sensitivity curves
difficult. The stochastical and simplified studies in the following sections
will allow us to analyze the problem more clearly.

3.1.4. Stochastical Approach

An efficient method to estimate the unknown parameters consists of
using an inverse technique. The method we used is based on the nonlin-
ear Gauss–Newton ordinary least-squares method that consists of finding
good values for the unknown parameters introduced in the theoretical
model to minimize, by an iterative process, the differences between the
experimental and theoretical curves. Let S be the sum of the ordinary
squared differences:

S =
∑

i

(Yi −T (ti , β))2 (11)

Y represents the experimental thermogram, T represents the theoretical
thermogram as a function of time t , and β denotes the unknown parame-
ters. The subscript i refers to the time ti . Minimizing S with respect to βj

is equivalent to make its derivatives equal to zero:

∂S

∂βj

=0 ⇒
∑

i

∂T (t, β)

∂βj

(Yi −T (ti , β))=0 (∀j) . (12)

The previously defined sensitivity coefficient Xj (t, β) naturally appears in
this minimization. Thus, an observation of the sensitivity curves allows us
to know if the model we used is adapted or not to measure the parameters
we seek. By a linear expansion of the model around the solution, one can
obtain an analytical relation between the estimated values β̂ of the param-
eters and their real values β that is given by

β̂ =β + (
XtX

)−1
Xtε (t) , (13)

where ε (t) is the noise at time t .
From this relation, one shows that

E
(
β̂
)

=β (expected values of parameters (unbiased estimator)) (14)

V
(
β̂
)

=σ 2
n

(
XtX

)−1 =σ 2
n

[
Var (βi) Cov

(
βi, βj

)

Cov
(
βi, βj

)
Var

(
βj

)
]

(15)

covariance matrix (σn: standard deviation of noise).

The previous relation is very important because it allows us to evaluate
the errors in the estimated parameters. It also clearly shows that if the
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signal is not corrupted by the measurement noise, then one can expect
to estimate the unknown parameters with a high accuracy, even if their
effects on the signal are strongly coupled. In contrast, in the case of
a noisy signal, errors in the values of the estimated parameters directly
depend on the noise level, particularly if they are strongly coupled. To
know if the parameters that are estimated from the iterative process really
correspond to the thermophysical properties of the material, it is also of
a great interest to compute the correlation factor between parameters βi

and βj that is defined by

ρ
(
βi, βj

)= Cov
(
βi, βj

)

√
Var (βi) ·Var

(
βj

) (16)

The measurement will be much better when the variances are small and
the correlation coefficients are far from unity in absolute value. The
covariance and correlation matrices corresponding to the four preceding
parameters are given in Tables I and II. To be compared, these tables are
calculated from the reduced sensitivities.

From the covariance matrix, one can notice that the variance in β1 is
the smallest one, which shows that the accuracy for the thermal diffusiv-
ity will be better than for the thermal conductivity. In the same way, the
estimation will be better for oil than for water. Later on, one will consider
water as a test fluid knowing that for less conducting fluids, the results are
better. Finally, one can observe that the variances vary strongly with the
thickness of the walls, which will thus have to be optimized.

From the correlation matrix, one can note that β3 is correlated with
β1 and β2 in most cases, particularly for water. This confirms the preced-
ing results. For case 4, one can note that no parameters are correlated.

Table I. Variance–Covariance Matrices

Water - 0.5 mm Water - 2 mm

0.3394 -2.3464 2.4913 1.4724 0.3218 −0.8419 0.7528 −0.5216
−2.3464 16.5302 −17.4179 −9.4267 −0.8419 2.4531 −2.0146 2.5528

2.4913 −17.4179 18.4144 10.4120 0.7528 −2.0146 1.7770 −1.3092
1.4724 −9.4267 10.4120 9.7216 −0.5216 2.5528 −1.3092 8.7357

Oil - 0.5 mm Oil - 2 mm
0.0649 −0.2870 0.2533 0.1216 0.1920 −0.4540 0.1500 −0.2349

−0.2870 1.3529 −1.1408 −0.4388 −0.4540 1.3544 −0.2825 1.0794
0.2533 −1.1408 0.9958 0.4599 0.1500 −0.2825 0.1413 −0.0219
0.1216 −0.4388 0.4599 0.3979 −0.2349 1.0794 −0.0219 1.4113
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Table II. Correlation Matrices

Water - 0.5 mm Water - 2 mm

1.0000 −0.9907 0.9966 0.8106 1.0000 −0.9476 0.9954 −0.3111
−0.9907 1.0000 −0.9983 −0.7436 −0.9476 1.0000 −0.9649 0.5514

0.9966 −0.9983 1.0000 0.7782 0.9954 −0.9649 1.0000 −0.3323
0.8106 −0.7436 0.7782 1.0000 −0.3111 0.5514 −0.3323 1.0000

Oil - 0.5 mm Oil - 2 mm
1.0000 −0.9685 0.9965 0.7569 1.0000 −0.8903 0.9104 −0.4512

−0.9685 1.0000 −0.9829 −0.5981 −0.8903 1.0000 −0.6457 0.7807
0.9965 −0.9829 1.0000 0.7305 0.9104 −0.6457 1.0000 −0.0491
0.7569 −0.5981 0.7305 1.0000 −0.4512 0.7807 −0.0491 1.0000

Thus, it is possible to estimate a and λ at the same time, if the thickness
of the walls is chosen in an optimal way.
One can also notice that the estimation problem is strongly nonlinear since
the four studied cases exhibit very different covariance and correlation
matrices.
In all cases, it seems difficult to estimate the two parameters β1 and β2
simultaneously.

3.1.5. Simplified Study with Two Parameters

With the heat losses being less correlated with the other parameters at
short times (until the maximum of the thermogram is reached), let us con-
sider now for simplifying the case without heat loss (h=0) and notice that
the results obtained here will be less affected after we would like to take
into account the heat transfer coefficient. Indeed, this parameter has few
effects on the estimation of the other two parameters of interest β1 and
β2. To get rid of the influence of the parameter Q

/
S, a solution consists

of working with the reduced thermogram defined by

θ (t, β1, β2)= T (t, β1, β2, β3)

Tmax (β2, β3)
. (17)

Now, the model is only a function of two parameters β1 and β2. The
results obtained in the case of the four examples considered in the previ-
ous section are given in Fig. 7 and Table III.

In some cases, one can notice that the correlation between the param-
eters β1 and β2 is quite large (> 0.99). The first way to improve the esti-
mation is to find if any, a new couple of parameters, which would be less
correlated and that could be estimated under better conditions.



934 Remy and Degiovanni

Fig. 7. Reduced thermograms and sensitivity curves for water and oil (0.5 and 2 mm).

Table III. Covariance and Correlation Matrices

Water Oil

0.5 mm 2 mm 0.5 mm 2 mm

Covariance
0.5007 −3.0373 0.2369 −0.4378 0.1911 −0.5548 0.1977 −0.1851

−3.0373 18.6223 −0.4378 0.8622 −0.5548 1.6662 −0.1851 0.1979
Correlation

1.0000 −0.9947 1.0000 −0.9688 1.0000 −0.9832 1.0000 −0.9358
−0.9947 1.0000 −0.9688 1.0000 −0.9832 1.0000 −0.9358 1.0000

3.1.6. Parameters Substitution

In the model we have developed, a natural couple of parameters β1
and β2 appear. It is then possible, by a change of parameters, to introduce
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a new set of parameters βa and βb, such as

θ =f (t, β1, β2)=g (t, βa, βb) . (18)

These new parameters are functions of the previous ones, that is,

βa =fa (β1, β2) , (19)

βb =fb (β1, β2) . (20)

Thus, the sensitivities to the new parameters Xa and Xb can be written as
functions of X1 and X2 and the same is also true for the reduced sensitiv-
ities, variances, and covariances.
One obtains

• for the sensitivities:

Xab =X12J
−1, (21)

with

J =






∂fa

∂β1

∂fa

∂β2
∂fb

∂β1

∂fb

∂β2






Xab = [
Xa Xb

]

X12 = [
X1 X2

]
.

(22)

• for the reduced sensitivities:

X∗
ab =X∗

12J
∗−1, (23)

with

J ∗ =






β1

βa

∂fa

∂β1

β2

βa

∂fa

∂β2
β1

βb

∂fb

∂β1

β2

βb

∂fb

∂β2






X∗
ab = [

X∗
a X∗

b

]

X∗
12 = [

X∗
1 X∗

2

]
.

(24)

• for the covariance matrix:

[
Var (βa) Cov (βa, βb)

Cov (βa, βb) Var (βb)

]
=J

[
Var (β1) Cov (β1, β2)

Cov (β1, β2) V ar (β2)

]
J t . (25)

In the same way for the reduced quantities, substitute J for J ∗.
It is then easy to show that if X1 and X2 are proportional in a given

interval (X1 =KX2), then Xa and Xb are also correlated on this same
interval

(
Xa =K ′Xb

)
.
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Thus, the interest of introducing a new set of parameters is not to try
to estimate the two parameters simultaneously but to determine the more
sensitive parameter of the system by nullifying the sensitivity to the sec-
ond parameter. Theoretically, it is possible to find a couple of parameters
(βa, βb), which allow us to reach this result. Nevertheless, in practice, this
parameter must have a physical meaning and does not have to depend on
the nominal values of the parameters. The estimation problem being non-
linear, one can show that the optimum parameter is not unique and varies
according to the liquid we consider.

One can also notice that the sensitivity to a parameter varies accord-
ing to the choice of the second parameter, which would let one think (if
the parameters are not completely correlated) that it is possible to improve
the estimation of a given parameter by associating it with a particular
parameter. In fact, if we compute the variance of a parameter that repre-
sents the error made in the estimated value of this parameter, we can show
that this error is independent of the choice of the second parameter (the
demonstration of this general result is quite long and is not given here).

Thus, the estimation of the values of a new couple of parameters from a
model that is a function of these new parameters is equivalent to calculating
the values of these parameters directly from the estimated values obtained
for the parameters of the previous couple. This shows that the choice of the
parameters has no effect on the quality of the estimation.

In practice, the only interest in a change of parameters to appear in
the theoretical model, involves a quantity that can be evaluated indepen-
dently (for instance, through another experiment) and that can be fixed to
a nominal value in the model, which is equivalent to removing a parame-
ter in the estimation.

3.1.7. Choice of Model and Parameters

Let us apply the preceding remarks to the four thermograms in Fig. 7
and find a new set of parameters with the form:

{
βa =βm

1 βn
2

βb =β2.
(26)

One obtains (for the reduced sensitivities)

J ∗ =
[

m n

0 1

]
. (27)

The new sensitivities are given by
{

X∗
a = 1

m
X∗

1
X∗

b =X∗
2 − n

m
X∗

1 .
(28)
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Fig. 8. Sensitivity curves.

One has to choose n/m in such a way that X∗
b 	0.

Let us use the maximum of the sensitivity curves to choose n/m. From
Fig. 7a, one finds n/m	1

/
6 and from Fig. 7c, n/m	1

/
3. The values depend

strongly on the nature of the fluid. Thus, it is impossible to find only one
solution for βa. In practice, if two parameters are maintained, it will be nec-
essary to fix the nominal value of βb (or β2) because the sensitivity will be
never exactly equal to zero (parameters not being fully correlated).

However, there is a physical limitation with this theoretical approach.
The parameter βb = el

/
λl is unknown since it is a quantity that one finds

to measure. Then, it seems to be more relevant to introduce a parameter
than can be measured in an additional experiment, for instance, ρclel. As
it is impossible in all cases to eliminate a parameter and knowing that the
parameters substitution does not have any influence on the quality of the
estimation (if one keeps the same number of parameters), one chooses next:

β1 = el
/√

al and β2 =ρclel.

In difficult cases, one will have to fix β2 to its nominal value (as the stan-
dard deviation for β2 is too large).

Figure 8 gives an example of sensitivity curves obtained from the
four-parameter (el

/√
al, ρclel, Q

/
s, and h) and the three-parameter model

(β2 is fixed in this case).
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Table IV. Covariance and Correlation Matrices

Water - 1 mm

4 Parameters: el
/√

al, 3 Parameters (ρclel fixed):
ρclel, Q

/
s, and h el

/√
al, Q

/
s, and h

Covariance
0.2567 1.5697 1.0776 0.0993 0.0057 0.0094 0.1353
1.5697 9.8171 6.6809 −0.2249 0.0094 0.0208 0.3121
1.0776 6.6809 4.5673 0.1590 0.1353 0.3121 4.8955
0.0993 −0.2249 0.1590 4.9007

Correlation
1.0000 0.9888 0.9952 0.0886 1.0000 0.8596 0.8074
0.9888 1.0000 0.9977 −0.0324 0.8596 1.0000 0.9777
0.9952 0.9977 1.0000 0.0336 0.8074 0.9777 1.0000
0.0886 −0.0324 0.0336 1.0000

Table IV gives the corresponding covariance and correlation matri-
ces. One can observe that the variances and the correlations are strongly
improved when β2 is fixed.

3.2. Optimization of the Wall Thickness

The problem being nonlinear, the estimation of β1 and β2 can be
improved by choosing a thickness for the walls that minimizes the var-
iance of the parameters by taking into account the increase of the sig-
nal/noise ratio as the wall thickness is decreased (keeping the measurement
noise constant, the amplitude of the measured temperature decreases with
an increase of the wall thickness).

The study is made on the reduced thermograms with the three-param-
eter model:

θ =f (t, β1, β2, h) . (29)

The results are given in Fig. 9 for water and oil. At first sight, the results
are quite surprising. Contrary to what one could imagine, the variances
are larger for small wall thicknesses.

Indeed, for small wall thicknesses, we should find the behavior of a
monolayer material, with a variance of 0.003 for β1 but this value can only
be obtained when β2 is fixed to its nominal value. Thus, contrary to what
one could imagine, the use of thin walls does not improve the parameters
estimation, except if those are so small that they can be neglected (this case
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Fig. 9. Optimization of the walls thickness (water and oil).

is not very convenient in practice because it corresponds to very thin walls).
So, according to the wall thickness, we can consider three different cases:

1. Less than a few microns, one is in the presence of a monolayer of fluid.

2. Between a few microns and hundreds of microns, one is in
the presence of a homogeneous system, i.e., the response is the
response of a homogeneous medium but with an apparent diffu-
sivity that can differ from the real fluid diffusivity.

aap = λap

ρcap
, (30)
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with λap = (el +2ew)

/(
el

λl
+ 2ew

λw

)

and ρcap = (ρclel +2ρcwew)
/
(el +2ew).

3. Above hundreds of microns, one is in the presence of a non-
homogeneous three-layer material.

From this, two strategies can be defined:

1. For case 2, one can estimate an apparent diffusivity by a classical
flash model (model with three parameters: a, h, and Q) that must
be then corrected knowing the characteristics of the wall and the
specific heat of the fluid.

2. For case 3, there exists an optimum between 1 and 2 mm for the
wall thickness; one has to use a more detailed model with four
parameters allowing estimate of a and ρc of the liquid if β1 and
β2 are uncorrelated and with a knowledge of the characteristics of
the wall.

For practical reasons, particularly the hardness of the walls required to obtain
a good centering of the cylinders, we made the choice to work with case 3.

3.3. Inverse Problem

At first, the efficiency of our approach has been tested on simulated
thermograms. From the quadrupole model, one computes the theoretical
temperature response of the system and adds noise to obtain a simulated ther-
mogram on which the estimation will be carried out. Let us notice that the
noise added on the signal has a standard deviation of ±0.005◦C that is of the
same order of magnitude as those observed on experimental thermograms.

The estimation program uses the Levenberg–Marquardt [22] algo-
rithm. The objective function depends on four parameters:

• β1 = el
/√

al (square root of the characteristic time of the fluid)
• β2 =ρclel (heat capacity of the fluid)
• Q

/
S (energy per unit of area absorbed by the system)

• h (convective heat transfer coefficient between the walls
and the surroundings)

We plotted in Fig. 10 the simulated and theoretical curves obtained from
the estimated parameters, as well as the residuals (difference between theo-
retical and simulated curves). We also calculated (See Table V) the covari-
ance matrix as well as the standard deviations of the estimators. Results
are given for water and oil.
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Fig. 10. Estimation on simulated thermograms by an ordinary least-squares (OLS) method.

We can observe that the estimations of the thermal diffusivities are
good (for water a = 1.417 × 10−7 m2·s−1 and σ ∗

a = ±0.5%, for oil a =
7.284 × 10−8 m2·s−1 and σ ∗

a = ±0.3%). Also, the heat capacities are esti-
mated with a large uncertainty as given by the covariance matrices. The
comparison of the estimation obtained for each fluid allows us to confirm
that the estimation for water is slightly less precise than for oil.

The results obtained when the value of the parameter β2 is fixed are
given in Table VI. In this case, one finds a more precise estimation for β1
and thus for the thermal diffusivity.

4. IMPLEMENTATION

4.1. Experimental Bench

The previous study allows us to define the optimal characteristics for
the measuring cell (Fig.11):

• Walls in copper or stainless steel (1-mm thick)

• Thickness of the fluid (3 mm/4.5 mm)

• Height of the cell (100 mm)

• Inner diameter (24 mm)

The tubes constituting the walls are embedded in two pieces in Teflon not
only to ensure the concentricity and the sealing of the cell, but also the
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Fig. 11. Measuring cell.

insulation between the inner and outer cylinders. The cell is placed on a
frame surrounded by a metallic shield and an insulated bell to limit the
heat exchange by convection and radiation with the surroundings.

The pulse stimulation is produced by a moving flashlamp, which can
take place inside the measuring cell for the stimulation. The time length
of the pulse is a few milliseconds and its power is about 1000 J. To
avoid any heat release to the cell after the flash, the lamp is removed by
an automatic and motorized system after the stimulation. The tempera-
ture evolution is measurement via welded chromel-alumel thermocouples
(120-µm diameter) with separated contacts. The acquisition system is com-
posed of an analog or digital acquisition card and a conditioning module
and computer that allows automated treatment of the thermogram (See
Fig. 12).
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Fig. 12. Experimental device.

4.2. Example of Experimental Results

As shown previously, water is a good test fluid because it exhibits the
most unfavorable thermophysical properties for this kind of measurement.
In practice, the magnification factor Kof the experimental device (sensitiv-
ity of the thermocouples, amplifier, oscilloscope), which consists of multi-
plying the measured signal (temperature) to obtain a potential that can be
measured through an oscilloscope is ill-known. Thus, the parameter Q

/
S

is replaced by KQ
/
S in the theoretical model. For practical reasons (esti-

mation with three parameters, for instance), the experimental thermogram
is normalized with respect to its apparent maximum Umax. Thus, the esti-
mated parameter in the four-parameter model is: KQ

/
SUmax. Figure 13

Fig. 13. Estimation for an experimental thermogram (water) — four parameters model.
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Table VII. Covariance and Correlation Matrices

Water

4 Parameters: el
/√

al, ρclel, 3 Parameters (ρclel fixed):
Q

/
s, and h el

/√
al, Q

/
s, and h

Covariance
0.1453 0.6414 0.3682 0.0941 0.0039 0.0039 0.0557
0.6414 2.9094 1.6528 0.1704 0.0039 0.0064 0.0959
0.3682 1.6528 0.9452 0.1949 0.0557 0.0959 1.5606
0.0941 0.1704 0.1949 1.6610
Correlation
1.0000 0.9866 0.9936 0.1915 1.0000 0.7734 0.7111
0.9866 1.0000 0.9967 0.0775 0.7734 1.0000 0.9612
0.9936 0.9967 1.0000 0.1556 0.7111 0.9612 1.0000
0.1915 0.0775 0.1556 1.0000

Fig. 14. Estimation for an experimental thermogram (water) — three parameters model.

gives the results we obtained from the four-parameter model and the cor-
responding variances are given in Table VII. As expected from the theo-
retical study, one can observe that the estimation of the specific heat (ρc)

is not good. Figure 14 gives the results obtained from the three-parameter
model (i.e., ρc is fixed to its nominal value of 4.18 × 106 J·m−3·K−1) and
in Table VII are given the corresponding variances.
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One can note that the variances are much smaller than for the case
of four parameters, which characterizes a better estimation, especially for
the thermal diffusivity.

5. CONCLUSION

We described the different steps to develop an adapted device and
model for the estimation of the thermophysical properties of liquids. A
sensitivity study on the parameters enabled us to define an optimum wall
thickness for the measuring cell. A complete study on the estimation prob-
lem shows that for most liquids, it is possible to measure by this method
two main properties of the fluid (a and ρc). Lastly, an experimental design
was implemented. This method looks very interesting because it is a tran-
sient and low time-consuming technique that allows us to measure several
properties of the fluid by only one experiment and without any calibration
of the device (only the thermal properties of walls are required). The first
measurements obtained on water showed the relevance of the theoretical
study.
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